Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Indoor Air ; 32(8): e13095, 2022 08.
Article in English | MEDLINE | ID: covidwho-2019343

ABSTRACT

The coronavirus (COVID-19) lockdown in China is thought to have reduced air pollution emissions due to reduced human mobility and economic activities. Few studies have assessed the impacts of COVID-19 on community and indoor air quality in environments with diverse socioeconomic and household energy use patterns. The main goal of this study was to evaluate whether indoor and community air pollution differed before, during, and after the COVID-19 lockdown in homes with different energy use patterns. Using calibrated real-time PM2.5 sensors, we measured indoor and community air quality in 147 homes from 30 villages in Beijing over 4 months including periods before, during, and after the COVID-19 lockdown. Community pollution was higher during the lockdown (61 ± 47 µg/m3 ) compared with before (45 ± 35 µg/m3 , p < 0.001) and after (47 ± 37 µg/m3 , p < 0.001) the lockdown. However, we did not observe significantly increased indoor PM2.5 during the COVID-19 lockdown. Indoor-generated PM2.5 in homes using clean energy for heating without smokers was the lowest compared with those using solid fuel with/without smokers, implying air pollutant emissions are reduced in homes using clean energy. Indoor air quality may not have been impacted by the COVID-19 lockdown in rural settings in China and appeared to be more impacted by the household energy choice and indoor smoking than the COVID-19 lockdown. As clean energy transitions occurred in rural households in northern China, our work highlights the importance of understanding multiple possible indoor sources to interpret the impacts of interventions, intended or otherwise.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , Beijing/epidemiology , China/epidemiology , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis
2.
J Environ Manage ; 291: 112676, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1213353

ABSTRACT

Unprecedented travel restrictions due to the COVID-19 pandemic caused remarkable reductions in anthropogenic emissions, however, the Beijing area still experienced extreme haze pollution even under the strict COVID-19 controls. Generalized Additive Models (GAM) were developed with respect to inter-annual variations, seasonal cycles, holiday effects, diurnal profile, and the non-linear influences of meteorological factors to quantitatively differentiate the lockdown effects and meteorology impacts on concentrations of nitrogen dioxide (NO2) and fine particulate matters (PM2.5) at 34 sites in the Beijing area. The results revealed that lockdown measures caused large reductions while meteorology offset a large fraction of the decrease in surface concentrations. GAM estimates showed that in February, the control measures led to average NO2 reductions of 19 µg/m3 and average PM2.5 reductions of 12 µg/m3. At the same time, meteorology was estimated to contribute about 12 µg/m3 increase in NO2, thereby offsetting most of the reductions as well as an increase of 30 µg/m3 in PM2.5, thereby resulting in concentrations higher than the average PM2.5 concentrations during the lockdown. At the beginning of the lockdown period, the boundary layer height was the dominant factor contributing to a 17% increase in NO2 while humid condition was the dominant factor for PM2.5 concentrations leading to an increase of 65% relative to the baseline level. Estimated NO2 emissions declined by 42% at the start of the lockdown, after which the emissions gradually increased with the increase of traffic volumes. The diurnal patterns from the models showed that the peak of vehicular traffic occurred from about 12pm to 5pm daily during the strictest control periods. This study provides insights for quantifying the changes in air quality due to the lockdowns by accounting for meteorological variability and providing a reference in evaluating the effectiveness of control measures, thereby contributing to air quality mitigation policies.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Communicable Disease Control , Environmental Monitoring , Humans , Meteorology , Nitrogen Dioxide/analysis , Pandemics , Particulate Matter/analysis , SARS-CoV-2
3.
Environ Res ; 198: 111186, 2021 07.
Article in English | MEDLINE | ID: covidwho-1209730

ABSTRACT

Lockdown measures to curtail the COVID-19 pandemic in China halted most non-essential activities on January 23, 2020. Despite significant reductions in anthropogenic emissions, the Beijing-Tianjin-Hebei (BTH) region still experienced high air pollution concentrations. Employing two emissions reduction scenarios, the Community Multiscale Air Quality (CMAQ) model was used to investigate the PM2.5 concentrations change in this region. The model using the scenario (C3) with greater traffic reductions performed better compared to the observed PM2.5. Compared with the no reductions base-case (scenario C1), PM2.5 reductions with scenario C3 were 2.70, 2.53, 2.90, 2.98, 3.30, 2.81, 2.82, 2.98, 2.68, and 2.83 µg/m3 in Beijing, Tianjin, Shijiazhuang, Baoding, Cangzhou, Chengde, Handan, Hengshui, Tangshan, and Xingtai, respectively. During high-pollution days in scenario C3, the percentage reductions in PM2.5 concentrations in Beijing, Tianjin, Shijiazhuang, Baoding, Cangzhou, Chengde, Handan, Hengshui, Tangshan, and Xingtai were 3.76, 3.54, 3.28, 3.22, 3.57, 3.56, 3.47, 6.10, 3.61, and 3.67%, respectively. However, significant increases caused by unfavorable meteorological conditions counteracted the emissions reduction effects resulting in high air pollution in BTH region during the lockdown period. This study shows that effective air pollution control strategies incorporating these results are urgently required in BTH to avoid severe pollution.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , SARS-CoV-2
4.
Atmos Res ; 250: 105362, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-919733

ABSTRACT

As a result of the lockdown (LD) control measures enacted to curtail the COVID-19 pandemic in Wuhan, almost all non-essential human activities were halted beginning on January 23, 2020 when the total lockdown was implemented. In this study, changes in the concentrations of the six criteria air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) in Wuhan were investigated before (January 1 to 23, 2020), during (January 24 to April 5, 2020), and after the COVID-19 lockdown (April 6 to June 20, 2020) periods. Also, the relationships between the air pollutants and meteorological variables during the three periods were investigated. The results showed that there was significant improvement in air quality during the lockdown. Compared to the pre-lockdown period, the concentrations of NO2, PM2.5, PM10, and CO decreased by 50.6, 41.2, 33.1, and 16.6%, respectively, while O3 increased by 149% during the lockdown. After the lockdown, the concentrations of PM2.5, CO and SO2 declined by an additional 19.6, 15.6, and 2.1%, respectively. However, NO2, O3, and PM10 increased by 55.5, 25.3, and 5.9%, respectively, compared to the lockdown period. Except for CO and SO2, WS had negative correlations with the other pollutants during the three periods. RH was inversely related with all pollutants. Positive correlations were observed between temperature and the pollutants during the lockdown. Easterly winds were associated with peak PM2.5 concentrations prior to the lockdown. The highest PM2.5 concentrations were associated with southwesterly wind during the lockdown, and northwesterly winds coincided with the peak PM2.5 concentrations after the lockdown. Although, COVID-19 pandemic had numerous negative effects on human health and the global economy, the reductions in air pollution and significant improvement in ambient air quality likely had substantial short-term health benefits. This study improves the understanding of the mechanisms that lead to air pollution under diverse meteorological conditions and suggest effective ways of reducing air pollution in Wuhan.

SELECTION OF CITATIONS
SEARCH DETAIL